中山大学“百人计划”人才项目(第三类)
职称:副教授
导师资格:硕士导师
学位:博士
毕业学校:悉尼大学
电子邮箱: guanxx7@mail.sysu.edu.cn

Kwan, Trevor (Hocksun) 
Professional Title: Associate Professor
Appointed under SYSU's “Hundred people's plan” talent project (type 3)
Qualification: Supervision of master research students
Highest academic degree: Ph.D.
Graduated: University of Sydney
Email: guanxx7@mail.sysu.edu.cn

以下信息的更新日期为2025/10/9。 Please note that the following information is dated as of 2025/10/9.

学科方向  My Scientific Direction

主要研究方向为新能源系统热力学工程,包括:
1. 太阳能热科学利用:兼具学术深度与应用价值,适合开展学术研究。具体包含:
a. 太阳能分频/梯级利用技术
b. 太阳能与海水淡化耦合技术
2. 锂电池热管理:此方向贴合实际工程需求,适合开展工程应用研究。

研究学科:工程热力学、传热传质学与综合能源。
研究方法:MATLAB/Simulink建模、COMSOL/ANSYS等有限元分析建模、子系统模型耦合、实验研究。

The main research direction is the thermodynamic engineering of new energy systems, which encompasses:
1.Thermal Science Utilization of Solar Energy: It combines academic depth with practical value, making it suitable for academic research. Specific research contents include:
a. Frequency/cascade utilization technology
b. Coupling the technologies of solar energy and seawater desalination
2. Battery Thermal Management Technology: This direction aligns well with the needs of practical engineering, making it suitable for engineering applications research.

Research Discipline: Engineering thermodynamics, heat and mass transfer, and integrated energy systems.
Research Methodologies: MATLAB/Simulink modeling, finite element analysis modeling using software such as COMSOL and ANSYS, subsystem model coupling, experimental research

主要经历 My Career Experience

(1)2022/02 - 今, 中山大学, 先进能源学院, 副教授
(2)2019/10 - 2022/01, 中国科学技术大学, 工程科学学院, 副研究员
(3)2017/08 - 2019/10, 中山大学,航空航天学院,博士后
(4)2014/02 - 2017/09, University of Sydney, Aerospace Engineering, Ph.D
(5)2010/03 - 2013/11, University of Sydney, Bachelor of Engineering in Aeronautical (Space) Engineering

科研项目 My Funded Scientific Projects 

(1)国家自然科学基金委员会,青年项目,52506293,高效藻类-光热耦合系统的光谱分配与能量传递协同优化研究,2026-01至今,30万元,主持,在研

(2)广东省基础与应用基础研究基金项目, 面上项目, 2023A1515010790, 全光谱梯级利用高效藻类养殖系统的关键研究问题, 2023-01至今, 10万元,主持,在研
(3)深圳市稳定支持计划面上项目,基于冷热综合利用的高效碳捕获系统优化研究,2022A015,2022-09-01至今,30万,主持,在研
(4)合肥市科学技术局, 合肥市自然科学基金项目, 2021048, 火烧氢气瓶多物理场传热机理研究, 2021-07至2023-07, 10万元,主持,结题
(5)中国科学技术大学, 青年创新基金, WK2090000021, 基于燃料电池余能利用的高效淡水-电联供系统,2020/01 - 2021/12, 10万元, 主持,结题
(6)中国博士后科学基金会, 中国博士后科学基金, 2018M640854, 半导体热电装置与燃料电池集成系统的温度敏感性分析, 2019/01 - 2019/10, 8万元, 主持,结题
(7)国家自然科学基金委员会, 重点项目, 52130601, 基于光热转换和天空辐射制冷的“反季节”冷热调控研究, 2022/01 - 2026/12, 300万元, 参与,在研 
(8)广东省科学技术厅, 广东省海洋渔业厅重大科技项目, GDOE[2019]A01, 智能监测与清理成套海洋机器人, 2019/01 - 2021/12, 1000万元, 参与,结题
(9)广州市科学技术局, 广州市对外科技合作重大专项, 201704030089, 新型燃料电池的开发和应用, 2017/07 - 2020/06, 100万元, 参与,结题 

人才项目 My Talent Programs

(1)深圳市鹏城孔雀计划第C类,2024/01 – 2027/01
(2)中国科学技术大学墨子杰出青年特资津贴,2019/10 -2021/10;
(3)珠江人才计划博士后资助项目, 2017/8 - 2019/8;

获奖 My Awards

2018年度下半年优秀博士后, 中山大学

代表论著 My Paper Publications

[1] Trevor Hocksun Kwan*, Zhixin Liao, and Ziyang Chen, Techno-economic analysis of hybrid liquefaction and low-temperature adsorption carbon capture based on waste heat utilization. Energy, 2024. 288: p. 129722.
[2] Trevor Hocksun Kwan, Zhuohang Zhang, Jiale Huang*, and Qinghe Yao*, Fire safety parametric analysis of vehicle mounted hydrogen tanks based on a coupled heat transfer and thermomechanics model. International Journal of Hydrogen Energy, 2023.
[3] Trevor Hocksun Kwan*, Performance analysis of applying waste heat and moisture utilization in a highly efficient hybrid atmospheric water harvester. Applied Thermal Engineering, 2023. 227.
[4] Trevor Hocksun Kwan*, Thermodynamic analysis of a waste heat utilization based efficient liquefaction and low-temperature adsorption carbon capture hybrid system, Applied Energy, 2023, 340.
[5] Trevor Hocksun Kwan, Qinghe Yao*, Numerical analysis on the geometrical design of liquid cooling based carbon capture by adsorption for higher thermal efficiency. International Communications in Heat and Mass Transfer, 2022. 139.
[6] Trevor Hocksun Kwan*, Shuang Yuan, Yongting Shen, Gang Pei Comparative meta-analysis of desalination and atmospheric water harvesting technologies based on the minimum energy of separation. Energy Reports, 2022. 8.
[7] Trevor Hocksun Kwan*, Datong Gao, Yongting Shen, Gang Pei*, Energy and exergetic analysis of applying solar cascade utilization to an artificial photosynthesis energy supply system, Energy Conversion and Management, 2022, 257(115449)
[8] Trevor Hocksun Kwan, Datong Gao, Bin Zhao, Xiao Ren, Tianxiang Hu, Yousef N. Dabwan, and Gang Pei*, Integration of radiative sky cooling to the photovoltaic and thermoelectric system for improved space cooling. Applied Thermal Engineering, 2021. 196.
[8] Trevor Hocksun Kwan*, Yongting Shen, and Gang Pei*, Multi-Objective Approach for the Performance and Economic Optimization of the Two TED Sub-Cooled Trans-Critical Carbon Dioxide Cycle. International Journal of Refrigeration, 2021.
[9] Trevor Hocksun Kwan, Yongting Shen, Gang Pei*, Recycling fuel cell waste heat to the thermoelectric cooler for enhanced combined heat, power and water production. Energy, 2021.22, p.119922.
[10] Trevor Hocksun Kwan, Yongting Shen, Tianxiang Hu, Gang Pei*, Passively improving liquid sorbent based atmospheric water generation by integration of fuel cell waste products. Journal of Cleaner Production, 2021.287, p.125007.
[11] Trevor Hocksun Kwan, Yongting Shen, Tianxiang Hu, Gang Pei*, The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater. Applied Energy, 2020. 279.
[12] Trevor Hocksun Kwan*, Fujii Katsushi, Yongting Shen, Shunan Yin, Yongchao Zhang, Kiwamu Kase, Qinghe Yao*, Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration. Renewable and Sustainable Energy Reviews, 2020. 128: p. 109897.
[13] Trevor Hocksun Kwan, Bin Zhao, Jie Liu, Gang Pei*, Performance analysis of the sky radiative and thermoelectric hybrid cooling system. Energy, 2020: p. 117516.
[14] Trevor Hocksun Kwan, Bin Zhao, Jie Liu, Zhaojun Xi*, Gang Pei*, Enhanced cooling by applying the radiative sky cooler to both ends of the thermoelectric cooler. Energy Conversion and Management, 2020. 212: p. 112785.
[15] Trevor Hocksun Kwan*, Yongting Shen, Zhen Wu, Qinghe Yao*, Performance analysis of the thermoelectric device as the internal heat exchanger of the trans-critical carbon dioxide cycle. Energy Conversion and Management, 2020. 208: p. 112585-112597.
[16] Trevor Hocksun Kwan, Yongting Shen & Qinghe Yao*, An energy management strategy for supplying combined heat and power by the fuel cell thermoelectric hybrid system, Applied Energy, 2019, 251: 113318
[17] Trevor Hocksun Kwan, Xiaofeng Wu & Qinghe Yao*, Performance comparison of several heat pump technologies for fuel cell micro-CHP integration using a multi-objective optimisation approach, Applied Thermal Engineering, 2019, 160: 114002.
[18] Trevor Hocksun Kwan & Qinghe Yao*, Thermodynamic and transient analysis of the hybrid concentrated photovoltaic panel and vapour compression cycle thermal system for combined heat and power applications, Energy Conversion and Management, 2019, 185: 232-247
[19] Trevor Hocksun Kwan, Daiki Ikeuchi & Qinghe Yao*, Application of the Peltier Sub-Cooled Trans-Critical Carbon Dioxide Heat Pump System for Water Heating – Modelling and Performance Analysis, Energy Conversation and Management, 2019, 185: 574-585
[20] Trevor Hocksun Kwan & Qinghe Yao*, Preliminary study of integrating the vapor compression cycle with concentrated photovoltaic panels for supporting hydrogen production, Renewable Energy, 2019, 134: 828-836.
[21] Trevor Hocksun Kwan, Yongchao Zhang, & Qinghe Yao*, A coupled 3D electrochemical and thermal numerical analysis of the hybrid fuel cell-thermoelectric device system, International Journal of Hydrogen Energy, Vol. 53, Issue 54, p. 23450-23462, 2018.
[22] Trevor Hocksun Kwan & Qinghe Yao*, Exergetic and temperature analysis of a fuel cell-thermoelectric device hybrid system for the combined heat and power application. Energy Conversion and Management, 2018. 173: p. 1-14.
[22] Trevor Hocksun Kwan, Xiaofeng Wu, & Qinghe Yao*, Parameter sizing and stability analysis of a highway fuel cell electric bus power system using a multi-objective optimization approach. International Journal of Hydrogen Energy, 2018, Vol. 53, Issue 45, p. 20976-20992.
[23] Trevor Hocksun Kwan, Xiaofeng Wu, & Qinghe Yao*, Integrated TEG-TEC and variable coolant flow rate controller for temperature control and energy harvesting. Energy, 2018. 159: p. 448-456.
[24] Trevor Hocksun Kwan*, Xiaofeng Wu, Qinghe Yao*, Complete implementation of the combined TEG-TEC temperature control and energy harvesting system, Control Engineering Practice, 2019, 95: 104224
[25] Trevor Hocksun Kwan, Xiaofeng Wu & Qinghe Yao*, Bidirectional Operation of the Thermoelectric Device for Active Temperature Control of Fuel Cells, Applied Energy, 2018, 222: p. 410-422.
[26] Trevor Hocksun Kwan, Xiaofeng Wu & Qinghe Yao*, Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells, Applied Energy, 2018/05, Vol. 217, p. 314-327, ISSN 0306-2619
[27] Trevor Hocksun Kwan, Xiaofeng Wu & Qinghe Yao*, Thermoelectric device multi-objective optimization using a simultaneous TEG and TEC characterization. Energy Conversion and Management, 2018, 168: p. 85-97.
[28] Trevor Hocksun Kwan* & Xiaofeng Wu, High performance P&O based lock-on mechanism MPPT algorithm with smooth tracking, Solar Energy, Vol. 155, 2017, p. 816-828, ISSN 0038-092X
[29] Trevor Hocksun Kwan* & Xiaofeng Wu, Maximum power point tracking using a variable antecedent fuzzy logic controller, Solar Energy, Vol. 137, 2016, p. 189-200, ISSN 0038-092X
[30] Trevor Hocksun Kwan* & Xiaofeng Wu, An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space, Acta Astronautica, 2017. 132: p. 33-42.
[31] Trevor Hocksun Kwan*, Xiaofeng Wu, The Lock-On Mechanism MPPT algorithm as applied to the hybrid photovoltaic cell and thermoelectric generator system, Applied Energy, 2017, Vol. 204, p. 873-886, ISSN 0306-2619
[31] Trevor Hocksun Kwan*, Xiaofeng Wu, Power and mass optimization of the hybrid solar panel and thermoelectric generators, Applied Energy, 2016, Vol. 165, p. 297-307, ISSN 0306-2619
[32] Datong Gao, Guangtao Gao, Jingyu Cao, Shuai Zhong, Xiao Ren, Yousef N. Dabwan, Maobin Hu, Dongsheng Jiao, Trevor Hocksun Kwan*, Gang Pei*, Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature. Applied Energy, 2020. 269: p. 115129.
[33] Yongting Shen, Bin Zhao, Trevor Hocksun Kwan*, Qinghe Yao*, Numerical analysis of combined air-cooled fuel cell waste heat and thermoelectric heating method for enhanced water heating. Energy Conversion and Management, 2020. 213: p. 112840.
[34] Combined Microgrid Power Production and Carbon Dioxide Capture by Waste Heat Cascade Utilization of the Solar Driven Organic Rankine Cycle, Yongting Shen, Trevor Hocksun Kwan*, Qinghe Yao*, Energy Conversion and Management, 2021. 236.
[35] Honglun Yang, Qiliang Wanga, Shuai Zhong, Trevor Hocksun Kwan, Junsheng Feng, Jingyu Cao, Gang Pei*, Spectral-spatial design and coupling analysis of the parabolic trough receiver. Applied Energy, 2020. 264: p. 114692-114701.
[36] Honglun Yang, Jing Li, Yihang Huang, Trevor Hocksun Kwan, Jingyu Cao, Gang Pei*, Feasibility research on a hybrid solar tower system using steam and molten salt as heat transfer fluid. Energy, 2020. 205: p. 118094-118110
[37] Hongli Yan, Guoping Wang, Zuowei Lu, Peng Tan, Trevor Hochsun Kwan, Haoran Xu, Bin Chen, Meng Ni*, Zhen Wu*, Techno-economic evaluation and technology roadmap of the MWe-scale SOFC-PEMFC hybrid fuel cell system for clean power generation. Journal of Cleaner Production, 2020. 255: p. 120225-120244.
[38] Xiaofeng Wu*, Zhicheng Xie, Xueliang Bai, Trevor Hocksun Kwan, Design of a 1-bit MEMS Gyroscope using the Model Predictive Control Approach, Sensors, 2019, 19(3): p. 730-750
[39] Zhicheng Xie, Tao Sun, Trevor Kwan, Xiaofeng Wu*, Motion control of a space manipulator using fuzzy sliding mode control with reinforcement learning. Acta Astronautica, 2020. 176: p. 156-172.
[40] Yongting Shen, Trevor Hocksun Kwan, Qinghe Yao*, Performance Numerical Analysis of Thermoelectric Generator Sizing for Integration into a High-Temperature Proton Exchange Membrane Fuel Cell. Applied Thermal Engineering, 2020. 178: p. 115486.
[41] Qinghe Yao*, Hang Bai, Trevor Hocksun Kwan, and Kiwamu Kase, A Parametric Study and Optimization of an Air Conditioning System for a Heat-Loaded Room, Mathematical Problems in Engineering, 2018, Vol 2018, p. 1-10.
[42] Eugene Kim*, Xiaofeng Wu, Trevor Hocksun Kwan, Xun Sun, Robert Bedington, Xueliang Bai & Alexander Ling, Preliminary System Design for AMMEQ-1: A Step Towards QKD, Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2018, Vol. 16, Issue 6 p. 528-534
[43] Mukherjee, Bhaskar*, Xiaofeng Wu, Tomasz Maczka, Trevor Hocksun Kwan, Yijun Huang, and Vladimir Mares, Near space radiation dosimetry in Australian outback using a balloon borne energy compensated PIN diode detector. Radiation Measurements, 2016. 94: p. 65-72.
[44] 王生, 姚清河* & Trevor Hocksun Kwan, 进气冲程增压注水对柴油发动机性能的影响, 中山大学学报(自然科学版), 2019, 第58卷, 第4期

专利My Patents

(1)关学新、廖志鑫、陈梓炀、黄迦乐、姚清河,一种基于冷冻与加湿-除湿耦合的高效海水淡化系统,发明专利, 2023115540124,2023.11.05
(2)关学新、廖志鑫、陈梓炀、司晨曦、熊振东、孙天宇,基于光伏-天空辐射制冷的全天候淡化海水与发电系统,发明专利,2023110303353,2023.08.15
(3)关学新、姚清河、罗语轩, 一种组合式藻类生产装置和应用系统, 发明, 202210508606.0, 2022.05
(4)关学新、姚清河、罗语轩, 基于太阳能光谱级联利用的藻类生物反应器系统及方法, 发明, 202210510330.X, 2022.05
(5)关学新、姚清河,基于耦合液化与低温吸附技术的高效碳捕获系统及方法, 202210954972.9, 2022
(6)Trevor Hocksun Kwan, 姚清河, 王生, 沈勇婷; 一种支持燃料电池废水回收和海水淡化的热电联产系统, 发明,CN201811336787.9, 2018;授权
(7)Trevor Hocksun Kwan, 姚清河, 王生; 一种燃料电池主动温度控制的热电系统及方法, 发明,N201711391351.X, 2017,授权
(8)关学新、高大统、裴刚; 燃料电池余能与吸收式水生成器耦合的淡水-电联供系统; 发明; 202010752095.8,授权
(9)关学新、赵斌、裴刚; 一种半导体制冷器与天空辐射制冷体耦合的复合制冷装置; 发明; 202010027015.2,授权
(10)Trevor Hocksun Kwan, 徐文兵, 沈勇婷, 姚清河; 聚光光伏与蒸汽压缩循环的新型热电联产系统, 发明,201910598048.X, 2019
(11)Trevor Hocksun Kwan, 沈勇婷, 徐文兵,姚清河;基于燃料电池热电联产系统的简易试验模型, 发明,201910598094.X, 2019
(12)Trevor Hocksun Kwan, 吴震,沈勇婷, 姚清河; 热电能源联产的纯氢燃料电池与便携供氢罐系统, 发明,201910598023.X, 2019